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Abstract. Homogeneous nucleation of liquid droplets in superheated crystals is considered in
order to estimate the maximum superheating of crystals. Using the previously derived universal
order parameter model of the crystal–melt transition (Iwamatsu M and Horii K 1996J. Phys.
Soc. Japan65 2311), it is determined that the catastrophic homogeneous nucleation occurs at
Tsuper∼ 1.11Tm, whereTm is the equilibrium melting point. This numerical estimation is consistent
with the results of maximum-superheating experiments.

Superheating experiments have indicated [1] that melting usually starts at heterogeneous
nucleation sites such as grain boundaries and free surfaces. If heterogeneous nucleation could
be avoided, it might be supposed that crystals could be superheated above their equilibrium
melting points. There have been several attempts at estimating the upper limit for the
superheating of crystals. For example, Fecht and Johnson [2] have argued that the upper limit
is defined by the isentropic temperatureT si , at which the entropies for a superheated crystal
and a liquid become equal. Their numerical estimation shows that this isentropic temperature
occurs atT si ∼ 1.38 Tm for Al above the thermodynamic melting pointTm. Following the
ideas of Fecht and Johnson, Leleet al [3] have estimated the isentropic temperatureT si for all
of the alkali metals from Li to Cs. They have found these alkali metals to have a rather high
superheating temperatureT si ∼ 2.0 Tm, and they have argued that vaporization will intervene
before this metastability limit is reached. Subsequently, Tallon [4] has suggested another inner
instability pointT vi , where the entropy for a superheated crystal becomes equal to that for a glass
(a diffusionless liquid) rather than that for a liquid. On the basis of a numerical estimation of
the entropy difference between liquid and glass, Tallon has suggested that this inner instability
point T vi is slightly lower thanT si . However, the superheating observed experimentally in
metallic crystals is typicallyTsuper∼ 1.1 Tm [5], which is far below the predictions based on
entropic instability.

Recently, Lu and Li [5] have proposed a new type of instability related to the catastrophic
homogeneous nucleation [6] of melts in superheated crystals. They have found that a massive
homogeneous nucleation catastrophe occurs in superheated crystals at a critical temperature
Tsuper ∼ 1.2 Tm which is much lower than the previously estimated instability pointsT si
and T vi . Because they used theclassical nucleation theoryand neglected the differences
between the thermodynamics of crystals and liquids, they obtained maximum superheating
1Tsuper ∼ 0.2 Tm, which is close to the maximum undercooling1Tunder ∼ 0.18 Tm [7].
However, it has long been recognized that whereas a liquid can be easily undercooled so long
as heterogeneous nucleation is avoided, a crystal cannot be superheated [8]. In fact, such
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an asymmetry has already been predicted for liquid–vapour nucleation, where the sign of
the so-called Tolman length [9] for the surface tension of liquid droplets becomes negative.
Such an asymmetry is further confirmed by recent theoretical calculations [10]. On the basis
of the density functional theory of the crystal–liquid interface for bcc metals [11], we have
constructed a universal order parameter theory of the crystal–melt transition [14]. This model
has been used to study homogeneous nucleation [14] and the steady-state kinetics of melting
and freezing [15]. We have successfully explained the empirical relation between the maximum
undercooling and the melting temperature proposed by Turnbull [7] half a century ago, and
have found a remarkable asymmetry between the freezing and melting behaviour [15]. In
particular, we can explain the observed asymmetry in the interfacial velocity of a freezing and
melting front [15]. In this letter, we reconsider thisnon-classical nucleation theoryon the
basis of the order parameter model [14] in order to examine the homogeneous nucleation of
melting in superheated crystal.

Using a simple Landau-type expansion of the density functional for the crystal–melt
interface, and assuming several universal relations derived from the experimental results for
various molten metals, we have derived a universal free energy1F of a crystal–melt system
given by [14]

1F ' α 1Hf
(
T

Tm

)
18 (1)

where1Hf = Tm 1Sf is the heat of fusion, andα is a universal constant:α ' 0.45 [7] for a
number of liquid metals. The non-dimensional model free-energy functional18 is given by

18[φ] =
∫ [

(∇φ)2 + εφ2 + φ2(1− φ)2] d3x (2)

whereφ(x) is the ‘crystallinity’ order parameter (φ = 0 for liquid andφ ∼ 1 for solid) that
represents the magnitude of the (110) Fourier component of the crystalline density [11]. All
of the physical quantities are appropriately scaled by assuming various empirical universal
formulae [14]. In particular, the undercooling1T < 0 and the superheating1T > 0 are
expressed in terms of the non-dimensional temperatureε defined by [14]

ε ' 0.44

Tm
1T . (3)

We should recall here that our model is based on the density functional model for bcc metal
and, therefore, the target materials are alkali metals. However, the model can be applicable to
other structures as well because the embryonic nucleus might have a structure similar to that
of a bcc metal [12,13].

The thermodynamic stability of a superheated crystal and an undercooled liquid can be
seen from the local part of the free-energy density in (2):

f (φ) = εφ2 + φ2(1− φ)2 (4)

which has three extrema atφ+, φ− given by

φ+ = (3 +
√

1− 8ε)/4 (5)

φ− = (3−
√

1− 8ε)/4 (6)

andφ = 0. The thermodynamic stability limits, referred to as the spinodal points, are defined
when the two minima lose absolute stability, which occurs atεspiu = −1 (undercooling) and
εspis = 1/8 (superheating) (figure 1). It can be seen in figure 1 that the crystalline order is
destroyed relatively easily. This asymmetry comes from the functional form of the model free
energy (4), where the order parameterφ is coupled with the temperatureε in the formεφ2.
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Figure 1. The model free-energy densityf (φ) at the upper spinodal (ε = 1/8, upper curve), at
liquid–solid coexistence (ε = 0, middle curve) and at the lower spinodal (ε = −1, lower curve).
This model intrinsically contains the asymmetry of the liquid and solid phases.

We would like to stress that this functional form is derived not on a phenomenological basis
but from the microscopic density functional theory [11].

Our simple model predicts the classical upper spinodal temperatureTspis for superheated
crystals at

Tspis' 1.28Tm (7)

from the universal relation (3) andεspis= 1/8. Therefore, our thermodynamic stability limit
(7) for superheated crystals predicted from our model free energy (4) is similar in magnitude
to the entropic stability limit suggested by Fecht and Johnson [2], but significantly smaller
than those suggested by Leleet al [3]. We also note again that figure 1 predicts significant
asymmetry between superheating and undercooling. Theclassical nucleation theoryused by
Lu and Li [5], however, can predict neither these spinodals nor this asymmetry.

In the non-classical nucleation theory, the order parameter profileφ(x) of a spherical
critical nucleus of homogeneous nucleation is determined from the stationary condition

δ 18

δφ(x)
= 0 (8)

which leads to a simple differential equation for spherical geometry with appropriate boundary
conditions [14]. We consider the spherical crystallites in an undercooled liquid and the
spherical liquid droplets in superheated crystals to be critical nuclei. The calculated density
profile is ‘soliton’-like [14] with diffuse interfaces and, therefore, the nucleus cannot be
considered to be a spherical bulk phase separated by a sharp interface as is assumed in
the classical nucleation theory. The work of formation for the critical nucleus18∗ of
homogeneous nucleation is the free energy of the nucleus whose density profile satisfies the
extremum given by (8).

In figure 2 we reproduce the work of formation18∗ of a critical nucleus calculated
in [14] as a function of undercooling and superheatingε. The magnitude of maximum
undercooling and superheating may be defined as the point at which the nucleation rate becomes
'1 cm−3 s−1 [6], which is given by [14]

1F ∗

kT
' 76. (9)
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Figure 2. The calculated work of formation18∗ of a spherical critical nucleus: the crystal cluster
in an undercooled liquid (ε < 0, left-hand portion), or the liquid droplet in a superheated crystal
(ε > 0, right-hand portion).

Table 1. Experimental data for the maximum superheating divided by the melting temperature
1Tsuper/Tm for various metals. Note that the theoretical maximum superheating is1Tsuper/Tm '
0.11, and the thermodynamic stability limit of superheated crystal is given by1Tspis/Tm ' 0.28.

Elements Tm (K) [16] 1Tsuper(K) 1Tsuper/Tm Reference

Ag 1234 25 0.02 [17]
In 430 40 0.09 [18]
Bi 544 90 0.17 [19]
Pb 600 40 0.07 [20]

40 0.07 [18]
120 0.20 [21]

Using equation (1), this condition is written as

α
1Sf

k
18∗ ' 76. (10)

Richard’s rule [16] states that the entropy of fusionNav 1Sf (Nav is Avogadro’s number) for
liquid metals has an average value of 8.8 J K−1 mol−1, whose accuracy is about 30%, except
for semiconductors and semimetals. Then the condition (9) is written as

18∗ ' 160 (11)

usingα = 0.45. From figure 1, we find that the superheating and undercooling, which cor-
respond to this condition, are roughly given byεsuper' 0.05 andεunder' −0.078, respectively.

If we assume that equation (9) corresponds to the maximum undercooling1Tunder and
maximum superheating1Tsuper, then we find from equation (3) the universal relation for the
maximum undercooling:

1Tunder

Tm
' 0.18 (12)

which has been empirically derived by Turnbull [7]. Similarly, the maximum superheating is
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given by

1Tsuper

Tm
' 0.11. (13)

In table 1, we show the recent data for maximum superheating1Tsuper/Tm for several
metals. It seems that the magnitude of maximum superheating is mostly of the same order as
our estimation1Tsuper/Tm ' 0.11. Interestingly, the maximum undercooling observed for Pb
is very close to our estimation of the upper spinodal1Tspis/Tm ' 0.28 given by (7), which,
however, might be merely fortuitous.

In conclusion, we have theoretically estimated the maximum superheating using an order
parameter model derived from microscopic density functional theory. We found that the model
predicts the universal superheating temperatureTsuper ' 1.11 Tm by applying non-classical
homogeneous nucleation theory. The thermodynamic stability limit of the superheated crystal
is given by the upper spinodal located atTspiu' 1.28Tm. Our theoretical results are consistent
with the observed experimental results.
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